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Abstract—Non-linear free vibrations of a circular cylindrical shell are examined using Donnell’s equations. A
modal expansion is used for the normal displacement that satisfies the boundary conditions for the normal
displacement exactly, but the boundary conditions for the in-plane displacements are satisfied approximately by
an averaging technique. Galerkin technique is used to reduce the problem to a system of coupled non-linear
ordinary differential equations for the modal amplitudes. These non-linear differential equations are solved for
arbitrary initial conditions by using the multiple-time-scaling technique. Explicit values of the coefficients that
appear in the forementioned Galerkin system of equations are given, in terms of non-dimensional parameters
characterizing the shell geometry and material properties, for a three mode case, for which results for specific
initial conditions are presented. A comparison of the results with those obtained in previous studies of the problem
is presented and the discrepancies are discussed.

NOTATION

meridional length coordinate
circumferential angle
radius of the shell
x/R
thickness of shell
h/R
length of cylinder
L/R, aspect ratio
inplane displacements
normal displacement
wih
v Young’s modulus, Poisson’s ratio
ER3/12(1-v)
mass density
Eh
stress function
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D 1/2
t [ iR 4] nondimensional time
pm

K RC/D

N, N, inplane stress resultants

Apns Byn, Ayo  nondimensional modal amplitudes also redefined as g4, ¢,, g;. etc.
M,N modal numbers

M MnjA

C, (M?+N?)~2

C, M™*

C, N~#

Q7 b, Ciju coefficients in Galerkin system of equations; listed in the Appendix for the three mode case
€ a small parameter that characterizes the amplitudes of initial conditions on g,

Tm multiple time scales
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component of ¢; multiplied by &”
Mmn/AN (ratio of circumferential wave length to axial wave length)
(N2h/R)?

G oty

INTRODUCTION

NoN-LINEAR effects have long been recognized to play an important role in determining
the stability and response of thin shells and plates under dynamic and aeroelastic loads.
Chu and Herrmann {1] first presented an analysis for flat plates, where they also demon-
strated the consistency of neglecting inplane inertia terms in the study of non-linear flexural
vibrations of a plate. Chu [2] later presented an analysis for circular cylindrical shells and
also gave a solution using a single-mode approximation, which indicated that the non-
linearity was always of the hardening type, i.e. the frequency increases with the amplitude
of vibration. Nowinski [3] later confirmed the results of Chu [2]. On the other hand, some
experiments by Evensen [4] and Olson [5] indicated that the non-linearity is of the softening
type, i.e. the vibration frequency decreases with amplitude. Evensen [6] later pointed out
that the mode shape assumed by Chu [2] does not satisfy the condition of continuity of the
circumferential inplane displacement, v, (but satisfies the support conditions on the normal
displacement, w) and conversely that the mode shape of Nowinski [3] satisfies the circum-
ferential continuity condition on v, but violates the condition w = 0 at the support. Further,
in the analyses of both Chu [2] and Nowinski [3], no restraints on the axial inplane-displace-
ment, u, at the ends of the cylinder were imposed.

Evensen [6] gave an analysis for a simply-supported shell, with a two-mode approxima-
tion, which satisfies the circumferential continuity condition on v and the condition w = 0
at the supports. However, the moment-free condition at the simply supported end was
violated to the order 0(A42,) (Where A,,, is the modal-amplitude} and further no constraint
was imposed on the axial displacement u at the ends of the cylinder. Thus, as Evensen [6]
himself points out, the assumed mode satisfies boundary conditions that actually lie
somewhere between simply supported and clamped ends. It should also be pointed out
that the two coupled modal equations derived by Evensen [6] contain both non-linear
“Inertia’ terms as well as non-linear “elasticity” terms (the terminology is the same as in
Bolotin [7]) in contrast to the equations of Chu and Nowinski [3] which contain only the
nonlinear elasticity terms as in Duffing’s equation. Using modes shapes similar to those of
Evensen [6], Matsuzaki and Kobayashi [8] obtained similar modal equations for clamped
and simply-supported shells. The results of Evensen [6] showed that, for the two-mode
response case, the nature of non-linearity is dependent on the aspect ratio & (ratio of
circumferential wavelength to axial wavelength); small values of £ generally resulting in
softening effects and large values of £ resulting in hardening effects.

Dowell and Ventres [9] presented a set of modal equations, wherein the assumed modes
satisfy the simple-support conditions for w exactly but both the circumferential continuity
condition on v, as well as the restraint on the inplane-axial displacement were satisfied on
the average. As is discussed in the following, this averaging method violates the continuity
constraint on v to the order 0{42,). Dowell, however, did not present any solutions for his
modal equations. However, such an averaging method has been shown to be a satisfactory
approximation for a plate or ring by Bolotin [10], Fralich [11] and Dowell [12].

As for the solution techniques, the method of harmonic balance or so-called method of
averaging (Ref. [13]) has been employed by Evensen [6] and Matsuzaki and Kobayashi [8]
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in studying the relation between the “natural” frequency and amplitude and the forced
response near resonance, using only a two-mode approximation. Similar techniques were
employed in the analysis of a circular ring by Evensen [14, 15], and Dowell [16] and by
Olson and Fung [17] in the analysis of shell flutter. If one wishes to retain more axial or
circumferential modes in the w expansion, the harmonic balance technique becomes very
tedious. In this regard, numerical integration of equations of motion to obtain the time
history of modal amplitudes have been suggested. However, due to wide variation of the
linear natural frequencies of each mode, no reliable information is available concerning the
namerical stability criteria on the time increments needed for the integration of non-
linear modal equations.

The purpose of the present paper is to study the non-linear vibration behavior of the
shell when the simple-support conditions on the normal displacement are satisfied exactly
and the restraint on both the inplane displacements, 4 and », is imposed, at least, in an
integral average sense.

Thus, the starting point of the present paper is to derive the non-linear modal equations
(using the averaging method similar to the approach of Dowell [9] to satisfy the boundary
conditions), in a convenient non-dimensional form in terms of pertinent non-dimensional
parameters characterizing the shell geometry and material properties. However, explicit
expressions for the coefficients in the non-linear modal equations are given for only a
three-mode case. A general solution procedure, for the free-vibration problem, when the
shell is subjected to arbitrary initial conditions and responds in M axial modes and N
circumferential modes, is given by assuming a uniformly valid asymptotic expansion using
the method of multiple time-scales (Refs. [21, 22]). The relation between the natural fre-
quency of each mode and its amplitude is derived theoretically for the general response
problem. Finally, the solution procedure is illustrated by an example wherein the shell is
initially disturbed in a specific mode and the response due to non-linear coupling is assumed
to involve three modes. Comparisons of the present results are made with those obtained by
Chu (2], Nowinski {3] and by Evensen [6]. A discussion of the noted discrepancies is
presented.

BASIC EQUATIONS AND PROBLEM FORMULATION

The equations for non-linear free vibrations of a circular cylindrical shell, based on
Donnell’s shallow shell theory, have been shown by Chu [2], to be,

Pw 100 1 [826) Fw _8*d Pw O azw]

DV4 A GZUW 7o vZcr
VW o 3 ax2 2 oxop axap ox? of M

@ Rox R
and
V4(I>_ Iazw+ 1[{d*w)? 62_w62_w
C =~ Rax? R \éxdp] ox* op?
where x is the meridional length coordinate, § the circumferential angle, R the radius of the
shell, h is the thickness, w is the normal displacement (positive inwards), V* is the bihar-
monic operator and @ is the inplane-stress function, such that
1 2’ _ o’ 1 R
* T R? op? T ox? = TR oxdp’

(2)

N (3)
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Further, the shell material is considered to be elastic, isotropic and the midsurface of the
shell is used as a reference surface. Thus,
ER?

D—12(1—v2) C = Eh. (4)
Implicit in the derivation of equations (1) and (2) are: (a) the neglect of inplane inertia and
consequently they are limited to purely bending motions, (b) only the predominant non-
linear terms have been retained, and thus, for instance, the non-linearities in curvature
strains have been ignored, (c) Donnell’s approximation (1/N? « 1, where N is the circum-
ferential wave number) has been used, which limits the analysis to N > 5, (d) the usual thin
shell assumption (h/R) « 1 and the neglect of transverse-shear and rotary inertia efforts, (e)
the non-linearities in the mid-plane stretching strain terms have been retained, using the
stress—displacement relations,

oy Ne o _ow Low)E v fow)® u v v 107 %0
e = rtala] Tarelas) Tt R T REC 2
1 Z)Nﬂ_ K.*_E@Z La_w +1 6v+ au I_VZ@ (5
U=0e = "rT2\5) T2r2\e8] TR C ox? )

(1 2) xﬂ_ 2(1 ) 1 6W @W 1 au 61] _ }1 6‘2(1)
e T Ravop "Rop ax] = T RC axap

It is assumed that the shell is simply supported, and thus, the boundary conditions on the
normal displacement are,
0w

w=0 atx=0,L, - =0 atx=0,L. (6)
0x

Following Bolotin [10], Fralich [11] and Dowell [9], the boundary conditions on the in-

plane displacements are satisfied on an average, thus:

F" L@axaﬁ [u L, B)—u(0,f)]1dp = 0

0

L p2n 61) L
f f —0x0p =f [v(x, 27)—v(x,0)]dx = 0
0 Jo OB 0
and

2n L
f f Ny ox2f = 0. ™
0 [¢]

The first of these states that the axial displacements ““on the average” are zero at x = 0, L;
the second that the circumferential displacement v is continuous in the circumferential
coordinate “‘on the average” and the last that the average shear is zero.

Using the non-dimensional variables,

~ () b \'? R*C
R R i R°C PR
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the equations (1) and (2) can be rewritten in non-dimensional form as,
a. O K 3?0 [62&) ?*w _o*® *w 62(D W ]
Vi +

ot2 8 da? 3B% da’ 600 dadB | 0aZ O

~ *w a*w\? a*wotw
4 - -
vie= 56(1 o |:(6oc6[3 do* 83{'

where, now,
do? 42 ot + o4
oot oulop?  op*

and for convenience, one can also write equations (5)(7) as

V4 =

~

0*d 52 ow\ 2 v52 ow ol o
— 2 _— = JO—— -
(1 v)aﬁ2 —vow+ ) ) 5 véaﬂ
(1 )62(1) _ " v62 avT) 52 aw 65+v56ﬁ
o 6ﬂ Ja
and, with the additional definitions,
2® *®
Nx = Ca—ﬁz, Ny = CW
and
2 ~
W=0 ata=0,4, V-0 atx=04
Ja
and

2n
f f % pudfp = [u(A B)—u(0, Bj] df = 0

J- J-Zn ov —00df = f (v, 27m)— (0, 27)] dx = O

LA EL)
dadff = 0.
L L Oudf B

A modal expansion for w can be assumed as,

Wie, B,7) = Y. Y Apn(t)cos NS sin Mo+ ZZ Bjn(t) sin Nf sin Ma

M N

553

©)

(10)

(11)

(12)

(13)

(14)

where M = Mn/A. The above expansion satisfies the boundary conditions, equation (12)
exactly, but the satisfaction of the in-plane displacement boundary conditions in an average
sense as in equation (13), as will be shown in the following, involves errors of the order
0(A3y). For purposes of illustration of the derivation of the Galerkin system of coupled
ordinary differential equations for the time behavior of 4,4 and B,y , only the following

terms are retained :

W(t, B, 7) = Ay cos Nf sin Mo+ B,y sin N sin Ma+ A, sin Ma.

(15)
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By substituting equation (15) into the right hand side of equation (10), one can solve for ®
completely as,

d=9,+9, (15a)

where the subscripts & and p stand for “homogeneous™ and “*particular”, respectively.
It can easily be shown that,

®, = 5C5 V*[C Ay sin Macos NB+ C By sin Masin Nf+C, A0 sin M)

Aj . B} .
+82Cy ey [%{Cz cos 2Ma— C; cos 2Nﬁ)+T‘§§(C2 cos 2Ma

1 ApynA .
+C; cos 2Nﬁ)——?AMNBMNC3 sin 2N/3—~»-ﬂ%‘-ﬂ(c3 cos Nf—C, cos Ma cos Nf)

B .
_%{;&(63 sin Nf—C, cos Ma sin Nﬁ)} (16

where,
C,=M*+N*»"%Cy,=M"* andC, = N~*. (17)

A comparison of equation (16) with equation (3.5) of Ref. [9] by Dowell, who assumed
the same modes as in equation (14) and satisfied similar boundary conditions as in equation
(13) shows agreement in the solution for @, except for the last two terms in equation (16),
which are apparently missing in Ref. [9].

For the homogeneous part, keeping in mind the “‘average” inplane displacement bound-
ary conditions {13), one can assume a simple function, as

By = SUN.S+1N,2 — Nogof) (8)

where N, Ny and N, are physically, the inplane restraint stresses generated at the ends of
the shell, due to the prevention of the inplane displacements on the ““average”. Substituting
for @ from equation (15a) in (11) and using the boundary conditions (13), it can easily be
shown that

- —y2 2 2 ! 5*Cy 1
Nx(l v)=(AMN+BMN)52(<:;”2+vc;"2)+r}(§£[(—1)M~1]AMo+ A

c g Axo (19)

_ [1—y* Ain+ B} 62 8
NB( — ) =( ““"';' ””)é%vcg”2+C;“2>+%C;”2Aﬁm+-}au—1)“—11Am (20)

Ny =0, (1)

Equations (19)-(21) agree with equations (3.10) of Ref. [9] by Dowell.

At this point it is worth mentioning that in substituting for d4i/0x and 00/0, in terms of W
and the derivatives of w and @ from equation (11), and using the “average” boundary
conditions equation (13), some terms of the order 0(A3y) and O(Bi,y) disappear in the
process of integration and thus one can see that the averaging process incurs errors of
0(AZy) in satisfying the inplane-displacement boundary conditions in an integrated
“‘average’ sense.
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Once the functions &)p and ®, are solved for,~as in equations (16) and (18)+21), respective-
ly, one can substitute for the total solution for ® and for the assumed displacement function
W as given in equation (15), into equation (9), to obtain a single non-linear differential
equation in time for the variables Ay, Byy and 4,,,. From this equation, using the

Galerkin technique and weighing in turn by each of the functions
sin Macos NB  sin Masin NB  sin Ma

and integrating over the shell midsurface, a system of three ordinary, coupled non-linear
differential equations in time can be obtained for the unknowns A,y , Byy and Ay, thus:

%q; .
W*“hgiz +3 bijnqq+ Z Y Z Cijqujqkql+0[q5] =0 fori=1,2,3 (22
ik j k1

where, for added convenience, the variables have been redefined as,

Apn q:
Bunl = {4,
Apo q3

Explicit values of the coefficients Q7, b;;, and C,j,, for the present three mode case under
consideration, are given in the Appendix, in terms of the non-dimensional parameters of shell
geometry and shell material properties. The coefficients b, and C;j, given above, are found
to agree with those in equations (3.11) and (3.12) of Ref. [9], where they are not listed explicit-
ly, after appropriate reduction of Ref. [9] equations to the form of equation (22).

Even though explicit values are presented only for a three mode case, it can easily be
seen that even for general (MXN) mode case as represented by equation (14), the final set of
equations can still be represented by equation (22), where the dimension of the vector g in-
creases accordingly. It can also be argued that since in the derivation of equation (1), major
non-linear effects have been retained to O(w?), the corresponding equation (22) is correct to
0(q®) in major non-linear effects in bending vibrations.

SOLUTION OF THE PROBLEM
The system of equation (22) will now be solved for any given initial conditions of the
type,t
g =¢x; at t=0
oq

6—-ci=£ﬂi att =0

(23)

where ¢ is an arbitrarily small parameter, that defines the amplitudes of initial values on
displacement and velocity. Correspondingly, one can define for the solution of equation (22),
that

q47) = &d{v). (24)

t Note that the physical initial condition is w; = gha; and éw,/0t = ehf;. The magnitudes of these are such that
the shell undergoes large displacements, but small strains.
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Upon substituting equation (24), equations (22) can be reduced to

0%,

gfzimg’- Gi+e }}j ; bindid+e’ g ;; Cijudiidi+0[e*] = 0. (25)
Equations of the above type have been dealt with, by using the method of harmonic balance
or of averaging by Krylov and Bogoliubov [18], Bogoliubov and Mitropolsky [13]. The
method of two-variable expansion was also employed by Cole and Kevorkian [19] in
studying single-degree of freedom systems. Morrison [20] discussed the close relationship
of the above two approaches and pointed out the relative simplicity of the two variable
expansion procedure. Kevorkian {21] later gave a detailed exposition of the two variable
expansion procedure. The generalization of the procedure using multiple-time-scales and
the validity of the asymptotic expansion procedure was also discussed by Nayfeh [22] for
single degree-of-freedom systems.

When the number of degrees of freedom involved is large, as in equation {25}, the method
of averaging of Mitropolsky [13] becomes tedious. In what follows, a simpler asymptotic
expansion procedure using the method of multiple-time-scales is given for the solution of
equation (25). One can define multiple time-scales 74, 1,, 75, ..., etc,, according as

T, = (&)™ (20)

One can now assume that there exists a uniformly valid asymptotic solution for §; of the
form,

M
Gi= Y € Gim(To,Tiseo, T)+ 0[] 27

m=0
where it should be pointed out that §;,, are now functions of the independent time scales
Tg,T1>T2,- - - » €tc. From equation {26), it can easily be seen that
o (':2 2

j_ _ m_f__ I mon n 78
ot ;8 dr,  01° ;gg ¢ 01,01, (=8)

substituting for d?/dz? and §; from equations (28) and (27), respectively, in equation (24)
and identifying terms multiplied by equal powers of ¢, one can obtain the following system
of equations:

terms with ¢°:

%G N
Qo = 0 (29)
0
terms with &*:
0%g;, *Gio - I
22 : QZ3, b:d; = ) 30
61.'(2) + (3'506’[1 + i dit +;§ uquOQkO ( )

terms with &?;

%Gy gy, Pgio | dio

iz op L9 9 5 97di i

ez Tt g o, T on
+ 2 Y biuldiodi +d;1 ko) + 2. 2. Y Cisadjododio = 0 (31

T x R

etc.
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The boundary conditions, equation (23}, can be likewise transformed as,

dio=0;,Guy =§p=---=0 forz,=0 (32)
0dio 5‘110 a‘ln 0G0 54;1 g,
- = = 0, = 33
Ote b, oty 610 01, a1, or, dt, (33)

etc., for 7,, = 0.

SOLUTION FOR THE ZEROTH ORDER SYSTEM
The zeroth order system, i.c. equation (29), has the general solution
qig = A,‘{fl N Tz [N .) elﬂgte +A?‘(Ti s T2y ) e—iQ;‘ro (34)

where 4 = \/ —1, A; is a complex quantity that is a function of the time scales 7, 1,,...,
etc. and A¥ is the complex conjugate of 4;. 4; and 4} can be determined from the initial
conditions, (32) and (33).

SOLUTION FOR THE FIRST ORDER SYSTEM

After substituting for §;, from equation (32), the first order system, i.e. equation (30),

can now be written as
g, 04 JA¥
i Q — 2 m M m,zo 2 Q —ln,»:o
a2 T i, & Fh e

Atol€d; ~ —Aralld; — O
_‘Zzbijk[AjAlfe rolfd; k)+AkA?=e AtolQ;— )
Ik

+AkAj CMD(QJ+Q")+A,?A;F e—lto(ﬂj+nk)]‘ (35)

In solving for equation (35), the terms on the right hand side which vary with frequency
Q; must be suppressed, as otherwise these would lead to spurious resonance in the solution
and hence would destroy its uniformity. This can be done, by setting,

04 0A*

ot, . o,
Thus, the quantities 4 and A* are not functions of 7, and hence it can be seen from equation
(34), that the zeroth order solution §;, doesn’t depend on the time-scale 1, a fact that can

be traced to the presence of quadratic non-linear terms in the original set of equation (22).
Now, equation (35) can be solved for §;, as,

qil — Bi e).ﬂ,-m +Bn* e-iﬂiro+z Z [b;'jk elto(QJ‘Qk)
J k

= Q. (36)

+b'—'~ e}.ro(ﬂj+ﬂk)+b*/ e—/lro(nj~ﬂk)+bggu e—i.ru(nj+ﬂk)] (37)
where B; = Bi(t,1;...), depends on the initial values for §;;, and the terms bj; and b},
can easily be seen to be
! = +M
wT Ty -9
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- + bl_]kA]Ak
) —F
%k, bfx = conjugates of by, by (38)
From the initial conditions, equations (32) and (33), it can easily be seen that
and g, =0 forr,=0
04 940
I 3, or 1, (39)

since the zeroth order solution, §;, , has been shown to be independent of 7, . Using equation
(39), the quantities B; and B¥ can be determined from equation (36), in terms of 4; and A}.

SOLUTION FOR THE SECOND ORDER SYSTEM
Substituting for §;, and §;, from equations (34) and (37), respectively, the second order
system, i.e. equation (31), can be reduced to,
0%Gi» 0A oA}
! Q = —211Q. ‘ lQm) 0.t —Aﬂitg
aTO -3+ iqi2 i a i a T,

B*
—2[1{2 Z i eAQito _ mL e—lﬂito:l _Z Z bijk[(Aj elﬂ,to
Ji k

T, Yoty

+ A;" e—m,ro) {Bk erxto B,’! e~ Mo +Z Z (b;clm e M —2mro

I m

+ b;‘/lm e/l(n. +Qm)to +b*e” A(Q1 =)0 + brlf'/n e~ A +nm)t0)}

+(Ak elﬂkt()_i_A;:: e—lﬂkto) {BJ elﬂjto_i_B}k e—/lﬂjro

+3>3 0
I m

+bfl;n e-—).(ﬂx~(2m)r0+b;§<l:l e-}»(ﬂx +Qm)ro)}:|

- Z Z Z Cijl4; eMro A¥e” AQjr0)( 4, ghro
i k1

—-Q A(Qr+Q2
_lﬂm el(ﬂz m)to +b},lm e (1 +2m)10

+Az: e—/lﬂkto)(Al eﬂ.ﬂzro+Al* e—}.ﬂxrg). (40)

Grouping terms on the right hand side that vary with frequency €;, equation (40) can be

rewritten as

azq‘2+Q = —2[1Q, ———+AQ
6 2 i 12 16 T, '611
a *

+AiZy,A,A;") “’"°+2(m, o
2

oB*
AQ,—
+ ,61

+Z P, elﬂ,t0+z pr e—lﬂrto-

+A*ZWAAﬂe Mo

(41)
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In the above, Q, stands for the combinations,

such that Q, # Q; and thus the terms on the right hand side of equation (41) which vary
with frequency Q,, would not produce any spurious resonance and hence would not alter
the uniformity of the solution. The explicit expressions for p, are very lengthy and hence
are not recorded here. After some manipulation, it can be shown that the coefficients y,
associated with the terms varying with frequency Q; on the right hand side of equation (41)
can be shown to be,

W=z C;m +§Z (2bnkblm + 2b¢kxbku + bukbku + bikib;:ix‘) forl=i (433)
Y= 3(Ci+ Caa+ Car) +3 Y @bibiy+bubi
X

+bibii+ bk + by + 2byibia + bibi
+biubia + bibiai + buabia)- {43b)

Spurious resonance in the solution of equation (41) can be eliminated by setting

04
AQ +A Zy,AIA, =0 (44a)
and
0B,
61, =0 (44b)

The system of equation (44a) can easily be solved by letting
Ay =, et (45)
where £, is a real quantity. Substituting equation (45) into equation {44) yields,

0. (5«5;

) +&; Z)’ifz =0 (46)
Separating real and imaginary parts in equation (46), one can obtain

9

e =0 @7

and

a6, 1
5;2' =0 53; 7t (48)
Equation {(47) can be solved as,

§i = Ei(fs I FEN § 49}
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Thus, the right hand side of equation (48) is independent of 7, and hence, one can write
1] ]
~ Z 'Ykélg T2 + 9,‘0(‘[3 3y z.m)' (50)
Qi k=1 ]

Using equations (49) and (50), equation (45) can be written as,

o es[L § o]

nkl

where
T T .40
An(T3’T4,'°') = éne "o,

Finally, one can now solve equation (41) for §;, as

N iQto 4 ok o AReTo
. ; . p,e*¥ 4 p¥e
i = Cie?¥ 4 Cre oy Z ( Qz_;}z )

r=1

(52)

where c¢; are to be determined from the initial conditions, equation (32), i.e.

q,'2=0 fOI"L'm=0

04z n 0dio 04 _
Bty (612 + o, for 7, = 0.

(53)

Using equation (51), the zeroth order solution, equation (34), can be rewritten as,
~ T, X
io = A; ¥ exp o Y ndrA,
T .
+ A¥ g~ Ml exp(-dZ- > A ;“). (54)

Using equations (54), (37) and (52) in equations (24) and (27), the total solution can now be
written as

at) = edio + Gy + G, +0e*]
— S[z‘f,- e}.ﬂir_i_ /T,* e—).ﬂit] +82[Bi em"’+B?‘ e~ At
+Z Z (b:'jk C;'I(Q’_Qk)-f-b?};‘ e—lr(ﬂj—ﬂk)_'_b;/jk eAr(Q,+Qk) +b:|;;(f e_)ﬂ(ﬂ;*'ﬂk))]
ik

lQrto —lﬂrto
[c Mty CF ey Z (p A /A o H +0[s] (55

where

~ 1 T T
Q, = Q, |:1+£ 3 Z YAy :I (56)
Ql k=1

Equation (55) indicates that, because of the non-linear coupling between the modes, even
though the initial conditions on the shell correspond only to a single mode, other modes
would also be excited. Further it can be seen that if the principal response of the excited
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mode is of order 0(e), the other modes are excited to order 0(¢2). Equation (56), on the other
hand, indicates the effect of non-linearity on the frequencies of natural oscillations of each
mode. The nature of the non-linearity (whether hand-spring type or soft-spring type)
depends on whether the quantity

N A~ i~
Z PeArAl
k=1

is positive or negative. From equation (43), it can be seen that y, depends on the non-
linearity coefficients b,; and C;;;. For the present 3 mode response case, if M is even,
as can be seen from the Appendix, all b;; vanish; and further the coefficients C,,,,,
C,522, Cysyq and C, 4,4, Ci133 and C,,33 are always positive, while the sign of the co-
efficients C33,1, C3322, C3333, would depend upon the parameters (Mn/A), N and h/R.
Thus, if the initial conditions on the shell are such that only either one of the first two modes
is initially excited, with M even, it can be seen from equation (43) that y, is positive and a
hard spring type non-linearity would result. If the shell is excited initially in the third mode,
the nature of non-linear behavior can only be decided based on the parameters (Mmn/A)
and 4.

If on the other hand, M is odd, the coupling between the first two modes and the third
mode exists in the form of non-vanishing b; ;, and consequently, the sign of y, in equation (43)
can only be divided for particular values of (Mz/A4), N and 6. To put the discussion that
follows in the proper perspective, a specific example is given.

RESULTS FOR PARTICULAR INITIAL CONDITIONS

Let the shell be subjected to the initial velocity conditions, as

W(a, B,0) = Oaa—v:(a, B,0) = £B,Q, sin Macos Nf = ¢f,Q, sin Ma cos(MTB) (57)

where

6=W= = . (58)

Mn M\ (=R}  Circumferential wave length
LI\N Axial wave length

For purposes of illustration, consider the response of the shell to be represented by.

W(a, B, ) = §,(t) sin Ma cos (Méﬁ) +§,(t) sin Ma sin (A—/Ic—/i) +4s(t)sin Ma.  (59)

It can be seen from equation (55) and using initial conditions, equation (57), the solution
of the zeroth order system is given by,

Gio = By sin Q{C, G0 = G30=0 (60)

where

2
a, = Ql[l+62§g{| (61)
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with
L [MVP]E R200-vHRYMYA ., [M\*]7?
o2 = | a4 M) | RURAMYY o | (M7 (62)
4 h ¢
Further, as can easily be seen from equation (43a) and the Appendix,
_ 3 1 2b113b3ll b113b311

From equation (63), it can be seen that when M is even,
Yy = %‘Cuu {(64)

which is always positive (since C, , is) and hence the non-linear natural frequency always
increases with amplitude, as indicated by equation (61). However, the sign of the second
term in equation (63), for M odd, depends on M, 4, N and é. Particular results are shown in
Figs. 1 and 2 and a comparison with previous results is discussed in the next section.

To complete the solution, the solution for the first order system, from equation (55),
can be written as,

) . 1 b, b,
Giu = By cosQ+ By sin Q +3 Q—?erl:fScos 20,1 (65)

Using the initial conditions,

Gy =0 andé‘-;ﬁ:o for t = 0 (66)
T
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F1G. 1. Influence of large amplitude on natural frequency.
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FiG. 2. Influence of large amplitude on natural frequency.

one can solve for B;; and write

__ —2by, Q8

b, b, 3
Giy = e Mp L cos 20,1. (67)

cos Q1 +2Q2 +2(4g12 o7

From equation (67) it can be seen that because of the vanishing of the b, in the present
example, the second mode is not present in the solution at least up to the first order solution.
By carrying on the higher order solution, it can be shown that the second mode is present
in the second and higher order solutions because of the nonzero coupling coefficient
C,,;;- This is in contrast to the forced response case, as has been shown by Evensen [6],
where the first and second mode responses are approximately of the same order when
the forcing function corresponds to only one of the modes. Combining equations (24}, (60),
{67) and (59), one can write for the response subject to initial conditions, equations (57)
and (58) as,

W(u, B, 7) = &f, sin Q,t sin Ma cos (MTﬁ)

b 202 1 Q3
ot [ “a— o ST e — o Zﬁ”] sin Mo .
3
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COMPARISON WITH RESULTS BY OTHER AUTHORS

Chu [2] assumed a single mode of the form
W = A,g\(t)sin % cos NB. (69)

It can be seen that the above mode satisfies the simple-support boundary conditions,
equation (6), on W. However, the condition of circumferential continuity of the circum-
ferential inplane displacement v and the boundary condition on axial inplane displacement
u were not satisfied. Thus, in Chu’s formulation, the homogeneous part of the stress func-
tion, i.e. @, as in equation (18), is not present. Whereas, in Nowinski’s formulation [3], the
mode shape was assumed as,

Mmy

Wiy, B, 1) = Apyy sin sin NS+ folt) (70)

where the function fy(t) is determined in terms of A,y using the condition of periodicity
of the circumferential displacement ; namely,

2n 61)

—df =0. (71
T B )
Thus,
NZ
folt) = ?Aim. (72)

It can be seen that the mode shape in equation (70) satisfies the simple-support condition
0*w/0x* = 0, but the condition w = 0 is violated to the order 0 (4%y). Moreover, no condi-
tion was imposed on u and the homogeneous part of the stress function, ®,, was taken as
zZero.
It should be pointed out that both Chu's [2] and Nowinski’s [3] analysis involved a
single mode and the final modal equation in both cases was of the form,
%A
T;;’—NJFCIAMNJFCZA;M =0 (73)
which is of the Duffing type, involving only non-linear terms of static origin or the so-called
“non-linear elasticity” terms and further C, was always positive. Thus, as can be seen from
Figs. 1 and 2, the non-linearity effect on the vibrational frequency for all cases is of the
hardening type, i.e. the frequency increases with amplitude.
On the other hand, Evensen’s analysis [6] involved a two-mode representation of the
type,

Mmny My

sin N

wiy, B, t) = Apa(t) sin cos N+ By(t) sin

5

N- 2 2 .2
+ﬁ[A7\lN + Bjn] sin”

Mnx
—T). (74)

It has been shown by Evensen [6], that the above mode shape satisfies the periodicity
condition on v. However, even though the condition w = 0 is satisfied, the condition of
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vanishing moments, i.e. 3*/0x? = 0, is not satisfied at the simply-supported ends. Also no
condition was imposed on the axial displacement u at the ends and further it was assumed
that @, = 0. In non-dimensional form, Evensen’s equations obtained from the Galerkin
procedure, look like,

0%ayy 3 Payy  [Payn\? 0%bpy [ Obagn\?
PRS0 [ o R
+yyaynlain+bin] +Wdbynlain +bin]? = 0 (75)
and another equation with A,y and B,y interchanged. In Evensen’s notation,
TMN = QMNt (76)
N3h\?
¥ = (_R— (77)
. Mn
S=UN 78
E éz (£2+1)2
2 —_ 7
i mez[(éul)Z“”lzu—vZ) )
4 ¥ 1 1 . ¢ (& +17
= —t | + 8
r=¢ [12(1—v2)+16 (E2+1)? (62+1)2+¢12(1——v2) (80)
3¢t 1 1 ) & (E2+1)
- T6[(§2+1)2+(9¢2+1)2] N [(52+1)2+‘/’12(1—v2) ' (®1)

Thus, it should be observed, that Evensen’s equations involve : (a) non-linear elasticity terms
of order 0(A43,y), with the coefficients of non-linearity y in equation (80) which can be either
positive or negative depending on &, (b) non-linear elasticity terms of order 0(43y) with the
coefficient of non-linearity é in equation (81) which is always positive and in addition, (c)
non-linear inertia terms of the type f2f” + f(f’)* (wWhere f = A,y), with the coefficient of
non-linearity, i, being always positive.

From general considerations of equations of the type (75), it can be shown (as, for
instance, in Bolotin [7]), that: non-linear inertia terms with positive coefficient of non-
linearity, in general, cause a decrease of natural frequency with amplitude ; and non-linear
elasticity terms either of third or fifth order with positive coefficients of non-linearity, in
general, cause an increase of natural frequency with amplitude. Thus, in Evensen’s analysis,
the non-linear inertia terms always cause a decrease in natural frequency; the fifth order
non-linear terms always cause an increase in natural frequency ; and, on the other hand,
third order non-linear terms cause a decrease in natural frequency, if

1 1/ 1
@) 0-A 16

(82)

and cause an increase in natural frequency, if

1 W 1

EriE S 120-m 16
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Thus, for results shown in Fig. 1; where ¥ = 1-0 and ¢ = 0-5 both the non-linear inertia
terms and the third order non-linear elasticity terms are of the softening type, which
dominate the hardening effect of the fifth order elasticity terms. On the other hand, for
results shown in Fig. 2, where y = 1-0 and & = 2.0 both the third and fifth order non-linear
elasticity terms cause a hardening effect, which dominate the softening effect of the non-
linear inertia terms. Thus, Evensen’s analysis appears to indicate that the nature of non-
linearity essentially depends on the parameters £ and .

In contrast in the present analysis, the assumed mode shape, equation (14), satisfies both
the simple-support conditions on w exactly, and the periodicity condition on v is satisfied
only on the average, which has been found to involve approximations of order 0(A4%y).
Also an *‘average” constraint condition is imposed on the inplane displacement u. Thus,
the homogeneous solution ®, does not vanish and is given by equations (18)~(21). The
modal equations involve only non-linear elasticity terms of second and third order. The
primary third order non-linear coupling coefficients Cy;; and C,;;; for i,j = 1,2 are always
positive, where as the sign of the coefficient C,3; for i = 1, 2, 3 depends on the values of the
parameters M, A, d and N. Also, when only one axial mode is retained, the second order
coupling coefficients b, ;, vanish for M even, (whereas they are non-zero for M odd) denoting
absence of second order coupling between the Nth and zeroth circumferential modes.

Thus, when M is even, in both Fig. 1 (¢ = 0-5; ¢ = 1.0) and Fig. 2 (¢ = 20,y = 1.0)
the coefficient C,  , is positive and hence a hardening type non-linearity is predicted and the
hardening effect is found to be more dominant than the results given by Chu [2] and
Nowinski [3). When M is odd, b;;;, # 0and are such that the coefficient y, in equation (63) is
slightly decreased compared to the case when M is even and hence, as shown in Figs. 1 and 2,
the hardening effect is less pronounced than the case when M is even.

The pronounced non-linear hardening effect in the present analysis as compared with the
results of Chu [2] is due to the fact that the structure is effectively stiffer when the axial
inplane displacements are prevented. The relative softening effect caused by the second order
non-linear terms, in the present case for M odd, indicates the desirability of retaining addi-
tional axial modes in order to allow for the effect of circumferential coupling.

SUMMARY AND CONCLUSIONS

The non-linear flexural vibrations of a simply-supported thin-walled circular cylinder
was analyzed by choosing mode shapes for the normal displacement and applying the
Galerkin technique. The assumed mode shape satisfies the simple-support boundary
conditions on normal displacement exactly and the inplane-displacement boundary
conditions were satisfied on an average and a non-zero homogeneous solution was assumed
for the inplane-stress function. Even though the explicit expressions for the Galerkin-type
modal equations were given only a three-mode response case, a general solution procedure
for the coupled non-linear response of (M x N) modes of the shell subjected to arbitrary
initial conditions is presented. The theoretical results show, that because of the non-linear
coupling, the response involves several modes, even though the shell is excited initially in
a given mode. The relation between the natural frequency of each mode and their amplitudes
is derived theoretically.

From the results of a three-mode response case, it has been found that the non-linearity
was of the hardening type (for £ = 2, = 1;and for ¢ = 0-5 and ¢ = 1-0). When the axial
wave number M is both even or odd.
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The non-linearity, even though in qualitative agreement with that predicted by Chu [2]
in all the cases considered here, is quantitatively stronger than that predicted by Chu and
this difference can be attributed to the fact that for large values of ¢ considered here (which
implies that L/R of the cylinder is small) the imposition of the restraint condition on the
inplane-displacement, as in present analysis, stiffens the structure considerably. The results,
however, differ significantly from those of Evensen [6], whose analysis predicts that the
non-linearity can be either the softening type (as in { = 0-5 and ¥ = 1.0 case) or of the
hardening type (as in { = 2 and y = 1-0 case). A discussion of this discrepancy has been
presented. Additional experiments, with emphasis on the boundary conditions, appear to be
necessary to confirm the non-linear behavior of shell response for larger values of {.

It is also pointed out that when only one axial mode is retained, for M (axial wave
number) odd, the Nth and zeroth circumferential modes are coupled in the quadratic
non-linear terms in the modal equations while they are uncoupled for M even. For M odd,
in both the cases, for which results are presented here, the effect of the quadratic coupling
was to decrease the hardening effect of the cubic non-linear terms. This indicates the desir-
ability of retaining additional axial modes for M even or odd to allow for the effect of
circumferential coupling.

The present analysis is based on Donnell’s shell equations which are valid for circumfer-
ential wave numbers n, such that 1/n? < 1. The application of a more accurate shell theory
such as due to Koiter [23] might prove useful.

Finally, it should be stressed the solution procedure given here, for free vibration prob-
lems represented by Galerkin-type of modal equations for many degrees-of-freedom and
involving quadratic and cubic non-linear modal couplings, is general and can be applied to
other vibrating structural elements like beams and plates.
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APPENDIX

Only the non-zero values of the coefficients Q7, b;;, C,;,; used symbolically in the text
are given here, for the three mode case, in terms of the already defined non-dimensional
parameters characterizing the shell geometry and material properties.

Qi = C{'+KC;'C, (A1)
Q2 =C{'+KC;!C, (A2)
2 = C 4+ K+ 2vCEE3 [ — (- )M]? (A.3)
[1_(_1)M] -1 -1 -0-5 -0-5y2
biiy=by;= _4K5_M’n———[1+clcz +C;EC, "+ Cy 7))
KC34ws[(— 1M~ 1] KC3 H28[1—(— )] "
(1—v)Mn Mmn(l—v?) '
1 s
byyy = b3y = —m[l —(—MEKIC;ICEC, (AS5)
KA%y? Kov ,
=4 [ (=DM———  C3¥1—(-1M A.6
bi33 +(1—v2)Mn:[ (—1D™] T— Mz > [1—(-1"] (A.6)
K& _ Ké*C;r .,
Cii1 = Cr222=Cy3yy =Cyyan = 76—(C2 +C3hH + ig(—l_“v—zj(czi‘*'cs v)
Ké3cst , R
>_(vC3+C3Y) (A7)

i)
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Ciisz = Caaz = {Kézci‘%[%*‘%fcsﬂ1(C§%+4C5§)»2J

C,%°K KC7i3C;%8°
FTT R ST (A-8)
c e KAzévc;%+Kc;152
3333 & 4(1_.1)2) 4(1_“)2)
and
KA* _ 4. KCy3¥HC; P 4vC ¥
63311 B C3322 -3 {~§Z—1~:—;]~2~i(l’cz i""f‘C‘:; '}}—f* 2 8((1jv2) 3 )
+ K3 C5HA+4C HCTE+4C; %)‘2]} . (A9)
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Aberpakt—Uenonb3ys ypasHenus JoHenna, HCCNenyIOTCH HenmHelnble caobomubie konebanus xpyrioh
uunuuapuyeckoll obonouxu, Menonsiyercs MOAANBHOE DAINONKEHHE AMIS HODPMAIBHOTO NEPEMELICHNS,
YIOBJETBOPALIEE TOYRO IPAHHYHBIM YCIOBHAM IUI HOPMAIBHOIO NEPEMELIeHHS, IPAHHYHBIC KE YCHOBHS
U fepeMetueHull B IIoCKoCTH NpROANIHTENEHO YAOBIETBODEHE METONOM ycpenHenus. Menonsayercs
meton Ianepkusa, C UeAbI0 CBEAEHUS 3aJa4M K CHCTEME CONDIKESHHBIX HENMHHEHHBIX OOBIKHOBEHHEBIX
pudbepeHiHanbHRIX YPaBHEHUH HIA MOJANBLHBIX aMIUTATYA. 3T Heyuuehupie nubdepenuuansasie
YDABHEHMA PEIIAIOTCA A% NPOKIBONLHAIX HAYATBHBIX YCHOBUH, NMyTEM NPHEMA METOA MHOTOBPEMEHHOTO
nepecutra. JarwrtcAd asHble 3madeHuMst Xo3DOUUMEHTOB, CYIIECTBYIOIIMX B BHILIC YNOMHATOM CuCTEMe
ypasrenuit Ianepxutia. Oup Bbipaxalorcs Ge3spasMepHpIME [1RDAMETPAMH, KOTOPHIE XaPaKTePHIYIOT
reomeTprio 0B0NOUKH ¥ CBOJCTRA MaTepHana, Ald TPeX BUAOB xoneGauuil, IS KOTOPHIX NPEACTABIICHB
PE3YABTATRL JNH CHCUMANbHBIX HAYaNbHLIX ycrnoBuit. [IaeTcst CpaBHEHHE DE3YJALTATOB C TAKHME XK€,
[ONYYEHHMMHI B NPENBIAYIIMX HMCCHENOBAHHA 3aauM M OOCYXAaeTcs PasHUB MEXHY DE3yALTATAMH
TEOpHiH,



